Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Heterogeneity of soil hydraulic (e.g., hydraulic conductivity (KS), porosity (θS)) and chemical (e.g., solid-phase adsorption (Kd)) properties complicates contaminant transport by creating spatial variability in sources of contaminant leaching. There is a knowledge gap on the effect of the interplay between these properties on the retardation and transport of per- and polyfluoroalkyl substances (PFAS) with different properties including carbon–fluorine chain-length and functional groups even in water-saturated conditions. Breakthrough curves have been used to evaluate PFAS transport behavior through heterogeneous media, including arrival time, maximum concentration, and tailing behavior. Contaminant mass flux reduction and mass removal correlations are also compared using numerical modeling to characterize PFAS transport through different source zones within a two-domain, heterogeneous system with comparison to homogeneous scenarios under water-saturated conditions. With heterogeneous properties, model sensitivity to KS was the highest among the other parameters and was controlled by the KS ratio between the different soils. The PFAS models in the homogeneous and heterogeneous scenarios were both sensitive to θS, depending on PFAS chain length. However, long-chain PFAS were less sensitive to θS variability compared to short-chain PFAS due to their higher Kd. The homogeneous and heterogeneous scenarios were equally sensitive to Kd variability, which was dependent on PFAS chain length.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Asphaltenes generally aggregate, then precipitate and deposit on the surfaces of environmental media (soil, sediment, aquifer, and aquitard). Previous studies have recognized the importance of asphaltene aggregates on the wettability of aquifer systems, which has long been regarded as a limiting factor that determines the feasibility and remediation efficiency of sites contaminated by heavy oils. However, the mechanisms/factors associated with precipitant effects on asphaltene aggregates structure, and how the precipitant effects influence the wettability of surfaces remain largely unknown. Here, we observe the particle-by-particle growth of asphaltene aggregates formed at different precipitant concentrations. Our results show that aggregates for all precipitant concentrations are highly polydisperse with self-similar structures. A higher precipitant concentration leads to a more compacted aggregates structure, while precipitant concentration near to onset point results in a less compact structure. The well-known Smoluchowski model is inadequate to describe the structural evolutions of asphaltene aggregates, even for aggregation scenarios induced by a precipitant concentration at the onset point where the Smoluchowski model is expected to explain the aggregate size distribution. It is suggested that aggregates with relative high fractal dimensions observed at high precipitant concentrations can be used to explain the relatively low Stokes settling velocities observed for large asphaltene aggregates. In addition, asphaltene aggregates with high fractal dimensions are likely to have high density of nanoscale roughness which could enhance the hydrophobicity of interfaces when they deposit on the sand surface. Findings obtained from this study advance our current understandings on the fate and transport of heavy oil contaminants in the subsurface environment, which will have important implications for designing and implementing more effective and efficient remediation technologies for contaminated sites.more » « less
-
Abstract Phosphorus (P) overloading is a major cause of surface water eutrophication and bottom water hypoxia. The incomplete understanding of different P pools and their corresponding bioavailability in the continuum from sources and sinks has limited the development of appropriate nutrient management strategies. Here we apply multistable isotope proxies to track colloids and identify whether specific P pools in colloids are biologically cycled at the Deer Creek‐Susquehanna River mouth stretch. Results showed that NaOH‐Piis the most dominant P pool in the summer and winter seasons. Oxygen isotope values (δ18OP) of NaOH‐Piand HNO3‐Pipools of different size fractions of colloids are much heavier than the ranges of equilibrium values in the ambient water, which suggest that these two pools are recalcitrant against biological uptake. It further means isotopic signatures of these P pools could be used to identify the sources of colloids. Carbon (C) and nitrogen (N) isotope compositions of colloids showed that the contribution of terrestrial sources gradually decreases downstream of the river toward the bay and Deer Creek contributes disproportionately high amounts of colloids to the Susquehanna River. These findings provide valuable information on the loading of colloids and relative bioavailability of colloidal P pools in estuarine ecosystems.more » « less
An official website of the United States government
